extension | φ:Q→Aut N | d | ρ | Label | ID |
C32:(C2xDic3) = C6.S32 | φ: C2xDic3/C2 → D6 ⊆ Aut C32 | 36 | 6 | C3^2:(C2xDic3) | 216,34 |
C32:2(C2xDic3) = C2xC32:C12 | φ: C2xDic3/C22 → S3 ⊆ Aut C32 | 72 | | C3^2:2(C2xDic3) | 216,59 |
C32:3(C2xDic3) = C2xHe3:3C4 | φ: C2xDic3/C22 → S3 ⊆ Aut C32 | 72 | | C3^2:3(C2xDic3) | 216,71 |
C32:4(C2xDic3) = C2xC33:C4 | φ: C2xDic3/C6 → C4 ⊆ Aut C32 | 24 | 4 | C3^2:4(C2xDic3) | 216,169 |
C32:5(C2xDic3) = S3xC3:Dic3 | φ: C2xDic3/C6 → C22 ⊆ Aut C32 | 72 | | C3^2:5(C2xDic3) | 216,124 |
C32:6(C2xDic3) = C33:9(C2xC4) | φ: C2xDic3/C6 → C22 ⊆ Aut C32 | 24 | 4 | C3^2:6(C2xDic3) | 216,131 |
C32:7(C2xDic3) = C3xS3xDic3 | φ: C2xDic3/Dic3 → C2 ⊆ Aut C32 | 24 | 4 | C3^2:7(C2xDic3) | 216,119 |
C32:8(C2xDic3) = Dic3xC3:S3 | φ: C2xDic3/Dic3 → C2 ⊆ Aut C32 | 72 | | C3^2:8(C2xDic3) | 216,125 |
C32:9(C2xDic3) = C6xC3:Dic3 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C32 | 72 | | C3^2:9(C2xDic3) | 216,143 |
C32:10(C2xDic3) = C2xC33:5C4 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C32 | 216 | | C3^2:10(C2xDic3) | 216,148 |