Extensions 1→N→G→Q→1 with N=C32 and Q=C2xDic3

Direct product G=NxQ with N=C32 and Q=C2xDic3
dρLabelID
Dic3xC3xC672Dic3xC3xC6216,138

Semidirect products G=N:Q with N=C32 and Q=C2xDic3
extensionφ:Q→Aut NdρLabelID
C32:(C2xDic3) = C6.S32φ: C2xDic3/C2D6 ⊆ Aut C32366C3^2:(C2xDic3)216,34
C32:2(C2xDic3) = C2xC32:C12φ: C2xDic3/C22S3 ⊆ Aut C3272C3^2:2(C2xDic3)216,59
C32:3(C2xDic3) = C2xHe3:3C4φ: C2xDic3/C22S3 ⊆ Aut C3272C3^2:3(C2xDic3)216,71
C32:4(C2xDic3) = C2xC33:C4φ: C2xDic3/C6C4 ⊆ Aut C32244C3^2:4(C2xDic3)216,169
C32:5(C2xDic3) = S3xC3:Dic3φ: C2xDic3/C6C22 ⊆ Aut C3272C3^2:5(C2xDic3)216,124
C32:6(C2xDic3) = C33:9(C2xC4)φ: C2xDic3/C6C22 ⊆ Aut C32244C3^2:6(C2xDic3)216,131
C32:7(C2xDic3) = C3xS3xDic3φ: C2xDic3/Dic3C2 ⊆ Aut C32244C3^2:7(C2xDic3)216,119
C32:8(C2xDic3) = Dic3xC3:S3φ: C2xDic3/Dic3C2 ⊆ Aut C3272C3^2:8(C2xDic3)216,125
C32:9(C2xDic3) = C6xC3:Dic3φ: C2xDic3/C2xC6C2 ⊆ Aut C3272C3^2:9(C2xDic3)216,143
C32:10(C2xDic3) = C2xC33:5C4φ: C2xDic3/C2xC6C2 ⊆ Aut C32216C3^2:10(C2xDic3)216,148

Non-split extensions G=N.Q with N=C32 and Q=C2xDic3
extensionφ:Q→Aut NdρLabelID
C32.(C2xDic3) = C2xC9:C12φ: C2xDic3/C22S3 ⊆ Aut C3272C3^2.(C2xDic3)216,61
C32.2(C2xDic3) = S3xDic9φ: C2xDic3/C6C22 ⊆ Aut C32724-C3^2.2(C2xDic3)216,30
C32.3(C2xDic3) = C6xDic9φ: C2xDic3/C2xC6C2 ⊆ Aut C3272C3^2.3(C2xDic3)216,55
C32.4(C2xDic3) = C2xC9:Dic3φ: C2xDic3/C2xC6C2 ⊆ Aut C32216C3^2.4(C2xDic3)216,69

׿
x
:
Z
F
o
wr
Q
<