extension | φ:Q→Aut N | d | ρ | Label | ID |
C32⋊(C2×Dic3) = C6.S32 | φ: C2×Dic3/C2 → D6 ⊆ Aut C32 | 36 | 6 | C3^2:(C2xDic3) | 216,34 |
C32⋊2(C2×Dic3) = C2×C32⋊C12 | φ: C2×Dic3/C22 → S3 ⊆ Aut C32 | 72 | | C3^2:2(C2xDic3) | 216,59 |
C32⋊3(C2×Dic3) = C2×He3⋊3C4 | φ: C2×Dic3/C22 → S3 ⊆ Aut C32 | 72 | | C3^2:3(C2xDic3) | 216,71 |
C32⋊4(C2×Dic3) = C2×C33⋊C4 | φ: C2×Dic3/C6 → C4 ⊆ Aut C32 | 24 | 4 | C3^2:4(C2xDic3) | 216,169 |
C32⋊5(C2×Dic3) = S3×C3⋊Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C32 | 72 | | C3^2:5(C2xDic3) | 216,124 |
C32⋊6(C2×Dic3) = C33⋊9(C2×C4) | φ: C2×Dic3/C6 → C22 ⊆ Aut C32 | 24 | 4 | C3^2:6(C2xDic3) | 216,131 |
C32⋊7(C2×Dic3) = C3×S3×Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C32 | 24 | 4 | C3^2:7(C2xDic3) | 216,119 |
C32⋊8(C2×Dic3) = Dic3×C3⋊S3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C32 | 72 | | C3^2:8(C2xDic3) | 216,125 |
C32⋊9(C2×Dic3) = C6×C3⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C32 | 72 | | C3^2:9(C2xDic3) | 216,143 |
C32⋊10(C2×Dic3) = C2×C33⋊5C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C32 | 216 | | C3^2:10(C2xDic3) | 216,148 |