Extensions 1→N→G→Q→1 with N=C32 and Q=C2×Dic3

Direct product G=N×Q with N=C32 and Q=C2×Dic3
dρLabelID
Dic3×C3×C672Dic3xC3xC6216,138

Semidirect products G=N:Q with N=C32 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C32⋊(C2×Dic3) = C6.S32φ: C2×Dic3/C2D6 ⊆ Aut C32366C3^2:(C2xDic3)216,34
C322(C2×Dic3) = C2×C32⋊C12φ: C2×Dic3/C22S3 ⊆ Aut C3272C3^2:2(C2xDic3)216,59
C323(C2×Dic3) = C2×He33C4φ: C2×Dic3/C22S3 ⊆ Aut C3272C3^2:3(C2xDic3)216,71
C324(C2×Dic3) = C2×C33⋊C4φ: C2×Dic3/C6C4 ⊆ Aut C32244C3^2:4(C2xDic3)216,169
C325(C2×Dic3) = S3×C3⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C3272C3^2:5(C2xDic3)216,124
C326(C2×Dic3) = C339(C2×C4)φ: C2×Dic3/C6C22 ⊆ Aut C32244C3^2:6(C2xDic3)216,131
C327(C2×Dic3) = C3×S3×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C32244C3^2:7(C2xDic3)216,119
C328(C2×Dic3) = Dic3×C3⋊S3φ: C2×Dic3/Dic3C2 ⊆ Aut C3272C3^2:8(C2xDic3)216,125
C329(C2×Dic3) = C6×C3⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C3272C3^2:9(C2xDic3)216,143
C3210(C2×Dic3) = C2×C335C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C32216C3^2:10(C2xDic3)216,148

Non-split extensions G=N.Q with N=C32 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C32.(C2×Dic3) = C2×C9⋊C12φ: C2×Dic3/C22S3 ⊆ Aut C3272C3^2.(C2xDic3)216,61
C32.2(C2×Dic3) = S3×Dic9φ: C2×Dic3/C6C22 ⊆ Aut C32724-C3^2.2(C2xDic3)216,30
C32.3(C2×Dic3) = C6×Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C3272C3^2.3(C2xDic3)216,55
C32.4(C2×Dic3) = C2×C9⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C32216C3^2.4(C2xDic3)216,69

׿
×
𝔽